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ABSTRACT

In this thesis, an investigation was performed to

analyze the dynamic stability characteristic of an aircraft

which has sustained damage to a primary control surface. The

analysis was performed using the existing functional form of

actual wind tunnel data taken on a F-16 model. Two control

schemes are used for trimming an F-16 that has sustained

damaged to its rudder. The First control scheme represent

the basic aircraft, while the second allowed the Horizontal

Tail Ailerons to move independently from the Flaperons.

The investigation was conducted for one flight

condition representative of the aircraft at cruise speed.

Region in a/P space where trim can be achieved was selected

as input into a linearized aircraft model. This model took

into account the failed control surface. The eigenvalues of

the open and closed loop models were analyzed to determine

the region in a/p space where the aircraft was dynamically

stable. The migration of the eigenvalues for several trim

conditions was also investigated to gain some insight on the

aircraft behavior while -'n an unsymmetrical orientation.

For this study, che open loop eigenvalues for the trim

area investigated gave a stable system. When the aircraft

controller was added into the system, regions of dynamic

instability appeared. For Rudder Failure less than -20

ix



degrees, trim could be achieved but the aircraft was

dynamically unstable.

x
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IDYNAMIC ANALYSIS OF COMBAT AIRCRAFT
U ITH CONTROL SURFACE FAILURE

I I. INTRODUCTION

m
In modern high performa' .e aircraft, Flight Control

Systems (FCS) are critical in achieving the performance

levels and operational utility required. Also, new designs

which increase the performance make the aircraft more

m dependent on the FCS for stabilization. If a control surface

is damaged or not operational, the control laws designed for

the healthy aircraft cease to be valid since any signal

going to the damaged control surface will be ignored.

Studies showed that the FCS contributed up to 20% of the

m aircraft losses in combat [1:11. The principal reasons were

the physical damage, the loss of function, or seriously

degraded flying qualities.

5 In recent years, several methods have been examined to

address the problem of damaged or failed control surfaces.

3 The development of techniques, like restructuring the FCS,

to restore control may have major implications in aircraft

flight safety , sortie generation in a combat environment,

3in reliability and maintainability, and in saving the

pilot's life and the aircraft. Before considering applying

any of these techniques, we must understand the dynamics of

I 1-1
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I,

3 the aircraft and evaluate whether stabilization is possible.

I Problem Definition

If a control surface is damaged or inoperable, several

negative effects will be encountered. First, any input going

3 to the damaged control surface will be ignored. The FCS will

have to rely on the other surfaces to control the aircraft

attitude. Second, the coupling effect between the

longitudinal and lateral modes of the aircraft may not be

r':gligible. For example, if the rudder fails and is locked

into a position other then zero, the aircraft is likely to

experience unwanted lateral force as well as yaw.

The questions that arise when a control surface becomes

m inoperable are: could we maintain the aircraft in an

equilibrium or trimmed state, and is the aircraft

£ dynamically stable? Depending on the flight condition, many

newer types of combat aircraft have to rely on the FCS to

provide dynamic stability even in a trimmed state.

m This research will deal with the latter question and

will attempt to provide a better understanding of the

5 problem and the means available to address it.

I
3 Previous Work

Eslinger [2) investigated a failure of the AFTI/F-16

3 right horizontal tail with all other surfaces operational.

* 1-2

I _



The failed surface was left free floating. His model

utilized constant aerodynamic derivatives at the selected

flight conditions. In order to restructure the control laws

for both the healthy and damaged aircraft, he used the

multivariable design technique developed by Professor

Porter. As he noted [1], the left horizontal tail assumes

primary pitch control while the other surfaces deflect to

counter the rolling and yawing moments produced by the left

jhorizontal tail deflection. Weiss et al, [3], developed and

solved an automatic trim problem for restructurable aircraft

I control. In their paper, the failure is treated as a

disturbance from desired steady-state outputs. Using the

observable part of those disturbances that exist after a

control surface failure, they feed forward a control

solution which is a function of the desired steady-state

output and the observed disturbance. They also noted

[3:405], that the most challenging single element failure is

a stuck rudder since it is used extensively for damping the

dutch roll mode, and little side force can be produced by

the other control surfaces.

Thural, [4], conducted wind tunnel experiment to

investigate the effect of various types of control surface

failures on the aircraft stability derivatives. He conducted

his test on a one-twentieth scale model F-16 in the AFIT

five foot wind tunnel. He collected data for three different

configurations, where each represented a potential failure

1-3



type. The data was collected by varying each control surface

individually for a given angle of attack (a) and sideslip

angle (p). Therefore, the data includes information about

the coupling of the static aerodynamic stability

derivatives. His experimental setup did not permit him to

collect data for dynamic stability derivatives.

In 1989, Zaiser, [51, reduced the data collected by

Thural for one particular failure. He employed a least

square curve fitting technique to develop polynomial

functions which describe the aircraft static stability

derivatives. After deriving the equilibrium equations for

rectilinear flight in terms of the static stability

derivatives, he analyzed the impact of an actuator failure

of the rudder for the F-16 aircraft. He also investigated

different control implementations which allowed for greater

independence of movement among the undamaged control

surfaces. Region in the a/p space where equilibrium was

achievable were investigated at two different flight

conditions.

At the conclusion of his thesis, Zaiser made several

recommendations for follow-on work, [5s66]. He stated that a

dynamic analysis should be performed to evaluate how the

aircraft would respond if trimmed in an unsymmetrical

orientation.

I
I 1-4
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Purpose

This research will investigate the dynamic stability

characteristic of an F-16 aircraft that has sustained damage

to its rudder actuator. Static aerodynamic coupling that

results from unsymmetrical trim orientation will be included

in deriving a linear state-space model of the aircraft. For

a given flight condition, several trimmed conditions will be

investigated for dynamic stability. The impact of the

failure will also be investigated for the current aircraft

control laws.

Approach

To accomplish the stated purposes of this research,

specific tasks are accomplished and presented in the

different sections of this thesis. The force and moment

coefficients that Capt Zaiser reduced into functional form

are used in conjunction with the equilibrium equations to

Ifind a trim condition for a specific control implementation.
The static stability derivatives are linearized for each

static equilibrium condition and included in the aircraft

plant model.

The linearized equations of motion are derived and

I analyzed to relate the impact that the different stability

derivatives have on the model. As Weiss pointed out,

[5:405], the actuator failure of the rudder is assumed to be

the most significant single primary control failure. This is

I 1-5
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taken into account, and the actual control laws of the F-16

aircraft are modified.

Presentation

The analysis performed in this thesis is presented in

the following chapters. Chapter II gives an overview of how

the equilibrium regions are obtained for the different

control implementations assumed. The derivation of the

linearized equations of motion and the formulation of the

F-16 plant will be included in Chapter III. Chapter IV will

look at the dynamic stability of the aircraft for the

different trimmed conditions. The results of this analysis

are presented and discussed in Chapter V and Chapter VI

contains a summary of the results of this research and

recommendations for further study.

1-6



II. TRIM D M RIIATION

Introduction

The analysis performed in this thesis is based on data

obtained by Zaiser, [5], in his Master's thesis in 1989. In

this chapter, a short description of the F-16 is given along

with a discussion of the results obtained by Zaiser. More

specific trim conditions are also evaluated using techniques

similar to those employed by Zaiser.

Aircraft Description

The F-16 is a single engine, low aspect ratio fighter

aircraft currently in service with several countries. Seven

control surfaces are employed on the aircraft. All seven

control surfaces are of interest in this research. The

location of each control surface can be found by referring

to Appendix A.

The primary function of the Leading Edge Flaps (LEFs)

is to vary the camber of the wing as the angle of attack (a)

increases. This causes CLmax to occur at higher a, thus

providing more lift. They are designed to deflect

symmetrically and their deflection is scheduled as a

function of a and Mach number. Therefore, the pilot has no

direct control authority on their deflection.

The Flaperons (FLs) are used to provide both lift and

2-1



m rolling moment. Below a specific dynamic pressure (j), the

FLs act as flaps to provide lift. Otherwise, they act as

ailerons which are controlled by the pilot to provide

m rolling moment.

The Horizontal Tails (HTs) are employed as elevators to

provide a pitching moment commanded by the pilot. The HTs

also deflect asymmetrically to augment the rolling moment,

and their deflection is scheduled as a function of altitude,

q, and Flaperons input.

The Rudder is the primary control surface for yawing

the aircraft. On the F-16, the rudder is the dominant

surface for generating side forces.

Table 2-1 I-16 Reference Data

Gross Weight gw 21018 jbf
Wing Area S 300 Ft
Span b 29 Ft
MAC t 10.94 Ft
Center of Gravity Cg 0.35 MAC

m Moment of inertia in Body axis

X Moment Ixx 10033.43 Slug Ft2

Y Moment Iyy 53876.27 Slug Ft2

Z Moment Izz 61278.45 Slug Ft2

X-Z Moment Ixz 282.13 Slug rt2

m Control Surface Deflection Limits

LEF -20 s 6 s 250

FL -20 0 s 6 s 200

HT -250 s 6 s 250
Rudder -300 s 6 s 300

2-2
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The sign convention adopted in this thesis is shown in

Figure A-2 of Appendix A. Basic aircraft data is presented

in Thural thesis (4:27], and is summarized in Table 2-1.

Aerodynamic Coefficients

The data collected by Thural, [4], is presented as

nondimensional force and moment coefficients for a given a

and p. Each coefficient can be transformed into a force or

moment using

F,= CF'i'S (2-1)

M, - C Sb

where F and s represent the appropriate force or moments s

acting on the aircraft in the stability axis system. Figure

A-2 gives a graphical representation of each axis system.

For a rigorous definition, refer to Etkin work [7,106-1121.

Since the data was taken at finite discrete points, it was

transformed in functional form for analytical purpose. Using

a Least Square curve fitting technique, Zaiser determined

the contribution of each force and moment on the aircraft

and its control surfaces as a function of a and p, [5:10-

16]. The functional form of each force or moment coefficient

are represented by equation 2-2 where the first term

represents the contribution of the basic aircraft with no

control surface deflections, and the second term represents

2-3



J-01- 71 M0n

I the contribution of each control surface. The functional
form of each aircraft static stability derivative is

presented in Appendix B and an example is shown in

I Figure 2-1.

-6.00 -3.00 000 300 6,00" 000 20

1688 1688

113.75 -co13.75

106 70 10653

Ia 7 50 0 907.50

43~8 4.38

25 1.25

I -188 -1.88

1-6.00 -3.00 0.00 3.00 5.00

Figure 2-1 Contours of Constant C D
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Equilibrium State

The desired trim conditions that are investigated in

this research have the aircraft flying a rectilinear

trajectory at constant altitude. When the aircraft is in

equilibrium, all external forces and moments acting on it

m equal zero. Therefore the equilibrium equations become

A, FT+F -mg sine = 0 (2-3)

FA, + mg cosO sin+ = 0 (2-4)

m FA. + mg cosO sin# = 0 (2-5)

m MA = 0 (2-6)

MA= 0 (2-7)

MA = 0 (2-8)

m where FAi, FTX, and HAl represent the aerodynamic forces, the

thrust force, and the aerodynamic moments in the i axis of

the body axis reference system. 8 and # are the Euler angles

that define the aircraft attitude with respect to earth

inertial reference frame. The only other equation required

in the trim analysis is an expression that defines the

aircraft pitch angle for a constant altitude flight, which

is

I ff Tan-'( Tana Cos* + TCos Sir*) (2-9)

2-5



Since no restriction was placed on a wing level flight,

coupling effects between the longitudinal and lateral modes

are apparent in equations 2-4, 2-5 and 2-9. A complete

derivation of the equilibrium equations can be found in

[5s85-99].

Before solving the trim equations for a specific rudder

failure, flight conditions need to be established. Table 2-2

gives the flight condition that is investigated in this

research.

Table 2-2 Flight Condition

Hach 0.6
Altitude 15000 Ft
Velocity 375 KEAS
q 300 psf

Problem Formulation

The desired equilibrium is a rectilinear flight at

constant altitude. Although equilibrium states might be less

difficult to achieve at other flight conditions, only

rectilinear flight will be investigated. A failure of the

rudder, which results in the rudder being locked into a

specific deflection is the only failure mode that this

thesis will study. The investigation will also be limited by

the range of the test data that was collected by Thural [4].

Therefore the dimensions of the a/A space that will be

2-6



investigated are limited to -6.00 s p s 6.00 and 00 s a s

20.0 ° .

Some assumptions still need to be stated before

proceeding with the analysis. They are,

1. The aircraft is assumed to be a rigid frame.

2. The earth surface is assumed to be an inertial frame

of reference.

3. The aircraft mass and mass distribution are assumed

to be constant.

4. The X-Z plane of the aircraft is assumed to be a

plane of symmetry.

These assumptions hold for both the equilibrium equations

and the linearized equations of motion developed in

Appendix D.

As discussed in the beginning of this chapter, the only

control authority that the pilot has on a healthy aircraft

is through the Horizontal Tail Elevator (HTE), the Rudder,

and the Flaperons (FLs). The Horizontal Tail Ailerons (HTAs)

deflection is proportional to the FLs deflection. For the

flight conditions of Table 2-2, the HTAs deflect only a

factor of 0.294 of the FLs [8].

The control schemes investigated in this thesis are

derived by allowing successively greater independence. One

point to note is that the control scheme discussed in this

chapter does not refer to the control laws. The two control

schemes investigated are shown in Table 2-3.

2-7



Table 2-3 Control schemes

Case A Zase B

6FL 6FL
6HTE 6HTE

6 HTA

Case A represents the basic aircraft. Case B allows the

HTA to deflect independently from the FLs. It is assumed

that an algorithm is present to trim the aircraft using

these control surfaces without modifying the actual control

laws. Also, the deflections of the individual control

surfaces in both cases are related as follows:

2

am = I (6 RaE - 8LUT) (2-12)

1 6,4(-38.W 2 Sz ' ~~r (2-13)

Before solving the trim problem, the external forces

and moments acting on the aircraft still need to be

determined. By specifying a, 0, and the dynamic pressure q,

2-8



m

I the external forces and moments are evaluated using the

3 polynomial listed in appendix B as a function of a specific

control surface deflection. The total external force or

m monent acting on the aircraft can be written as

F = A0 + B +; C1. gn pa a, (2-14)
.120 n-o

I
where Fi is the total force or moment acting on the

aircraft, A0 is the contribution of the aircraft with all

3 the control set to zero, D is the contribution of the failed

rudder and the LEFs, and the last term is the force or

3 moment that results from the unknown deflection of the

control surfaces. The unknowns thit ryi.ain to be evaluated

I are the deflection of the control surface.

Solving the trim problem

3 Assuming that the power available from the

aircraft can compensate for the aerodynamic forces and the

_ gravitational term in equation 2-3, the problem can be

3 formulated as follows

X3 - (Az + Bz + mg Cose Sin4) Cz8 6 (2-15)

(Am + BN) M (2-16)

32-9
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I

- (AL + BL) = C 8. (2-17)

Iz
- (AN + B) = Cia a. (2-18)

Since the components on the left side of each equation are

known, the problem can be reformulated as

b = [ A ] 8 (2-19)

where the vector b represents the known forces and moments,

the A matrix contains the control derivatives, and 6 is the

unknown control deflection vector. Using equations 2-4, 2-9,

and 2-15 to 2-18, the trim problem can be solved. For Case

A, the I in equations 2-15 through 2-18 is two, since only

the FLs and the HTE are directly controlled by the pilot. In

case B, I equals three since the HTAs are assumed to be

independent from the FLs.

Equation 2-4 and 2-9 are used first to estimate # and

0. For both cases, equation 2-19 represents an

overdetermined system of equations that can be solved using

Singular Value Decompositions (SVD) [9:59].

In his thesis, Zaiser wrote a computer code to solve

for the trim conditions, where the A matrix in equation 2-19

was square [5t112]. The same code is modified and used to

*mevaluate the trim conditions for each case at a given rudder

2-10



failure. Zaiser program was modified by the inclusion of a

least square algorithm in the SVD routine. Since a least

square solution can be obtained for any given set of initial

conditions, a range of values that would be considered zero

had to be established. Table 2-4 gives the limits that are

incorporated into the code.

Table 2-4 Forces and Moments
Limits

FAzI < 50.0 lbf

I FAyl < 50.0 lbf

IMAxI < 500.0 lbf Ft

IMAyl < 500.0 lbf Ft

IMAzI < 500.0 lbf Ft

Results from the Trim Analysis

3 The results from the trim analysis are presented in

Figures 2-2 to 2-7. The area where equilibrium is possible

3 is presented on the first graphic of each figure for a given

case and rudder failure. The roll angle and the control

surface deflections where the aircraft is in equilibrium are

also presented. For each of the cases and rudder failures,

if p is specified, only a very small variation in a is

permitted for the aircraft to remain in equilibrium.

2-11
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I
m

For a zero degree rudder failure, both cases show some

asymmetry. This results from the limits of Table 2-4 that

3 needed to be included in the code to calculate the trim

area. For a rudder failure other than zero degrees, a

3 vertical line is included in each graphic at p--6 0 since the

functional representation of the stability derivative is

only valid for -60 < P < 60 and 00 < a < 200, [5:30]. Data

points to the left of that line are not analyzed, since for

p < -60, the results are obtained by extrapolating the

m functional form of the stability derivatives.

One of the interesting features displayed in the

results is the attitude of the aircraft for a specific

condition. For a 250 rudder failure, case B, it might be

preferable to trim the aircraft at P--6 0 , a-1.8 0 and 0--180

5 since this is the trim condition that gives the most control

authority to each control surface. This will be taken into

consideration in the following chapters.

mm Summary

In this chapter, different rudder failure are presented

for a given control scheme and flight condition. The

aircraft controls are also presented with their limitations.

I- Assumptions are made regarding the control scheme

3 implementation for both cases. Data required to analyze the

aircraft dynamic response for a specific failure conditions

3 is presented.

1 2-18
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III. AIRCRAFT PLANT MODEL

Introduction

In this chapter, the linearized F-16 plant model is

derived using the functional representation of the static

stability derivatives of Appendix B for several trim

conditions. The eigenvalues of the open loop plant are

analyzed to determine the dynamic characteristics of the

aircraft for a specific rudder failure.

Linearized equations of notion

The mathe- -.cal model is presented in Appendix D. The

sign conven-. j for the axes and control deflections are

shown in Figure A-2 of Appendix A. The simplifying

assurptions made during the derivation of the equations of

mction are:

Assumption 1. The aircraft is assumed to be a rigid

body.

Assumption 2. The earth surface is assumed to be an

inertial reference frame.

Assumption 3. The mass and mass distribution of the

aircraft is assumed constant.

Assumption 4. Disturbances from steady flight

conditions are small, implying a small

angle approximation. Higher order terms

3-1
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I of the disturbance quantities are

negligible.

Assumption 5. The flow surrounding the aircraft is

assumed quasi-steady.

Assumption 6. Variation of the atmosphere, including

density and speed of sound, are

negligible for small altitude

perturbations.

Even if these assumptions are made, the equations still

include coupling effects. The complexity can be reduced by

I linearizing the equations of motion about a steady state

flight. For this investigation, the only restriction is for

the aircraft to fly a rectilinear trajectory at constant

altitude which implies,

1. Initial side velocity may exist: Vo

2. Initial bank angle may exist : to

3. Initial pitch angle exists : 90

4. No initial angular velocities exist which results in

Po = Q 0 = = =40 (3-1)

Equation 3-1 considerably simplifies the linearized

equations of motion shown in Appendix D, but they still

include coupling effects produced by the roll angle and the

side velocity. In this research, the effects of unsteady

atmospheric disturbances were neglected.
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3 Aerodynamic Forces and Moments

Assuming that the aircraft has enough thrust so that

steady state flight can be maintained, the thrust setting

will balance the remaining forces in the corresponding axis.

Also, the direct thrust contributions to the stability

derivatives is generally negligible for conventional

aircraft and is assumed to be zero for this aircraft

[6:267]. The only part of the linearized equations of motion

that still need development are the aerodynamic forces and

moments

The representation of the aerodynamic forces and

moments is usually made in the stability axis system. Since

the perturbed equations of motion are written in the body

3 axis system, the aerodynamic forces and moments need to be

transformed into that axis system. Each stability axis can

be transformed into the body axis system using the stability

to body axis transformation matrix ([BS]) presented in

Appendix D. Once the transformation is made, the aerodynamic

-- forces and moments are given in the same axis system as the

equations of motion.

3 Each of the forces and moments need to be expanded to

determine their dependence on the perturbed motion. The

Iexpansion is done using a Taylor series expansion at a given

5 trim condition, denoted by the subscript (),. The expansion

of the forces and moments can be represented as

* 3-3
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a lol+aF) 10A2 X 4.(-2)

F = o + 10o2 +.+(3

M = M + Iox + aM), . + +...+ (33)

I
where the variable A represent the perturbed velocities and

accelerations, and I the perturbation from the ().

condition. The higher order terms have been eliminated from

the expansion in accordance with assumption 4. The results

of this expansion is shown in Appendix D. The analysis of

the aircraft motion is performed at different trim

conditions where the aircraft attitude preclude the

separation of the longitudinal and lateral mode. Therefore,

all cross-coupling derivatives are included in the perturbed

equations of motion.

i State Space Form

In order to analyze the system, the perturbed equations

of motion are put into matrix form. This form is used to

determined the dynamic stability and control for various

rudder failure and trim conditions. The matrix form of the

I perturbed equations of motion may be written as:

A x + B (3-4)
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I where x represent the aircraft states, A the plant matrix, u

the control variables, and B the matrix of coefficients

associated with the control. To determine the stability of

the system, the eigenvalues of the plant matrix are computed

using a control analysis program (Pro-Matlab [10]). If an

I eigenvalue has a positive real part, then this state is

unstable. Dyn, mic stability still might be recovered with

the contr3ller. This aspect will be discussed in the next

chapter. Each of the eigenvalues are also presented

graphically to gain some insight on the plant behavior. It

i is also possible to analyze the controllability of the

system. Equation 3-5 is one method to determine the

controllability of the system. In this equation, A is the

I B ; AB : A2B An-B] (3-5)I
plant matrix, B the control matrix, Mc the controllability

matrix, and n the number of states. If Mc is full rank,

i rank(Mc) = n, then that particular trim condition is

I completely controllable with the available inputs using

state feedback. If the system is completely controllable

then it is possible to reach any state [11:2-42].

i Results

In order to facilitate the data handling, a computer

code was written to determine the plant matrix, A, and the

I 3-5
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control matrix, B, for different trim conditions. The

computer code is presented in Appendix E. The static

I stability derivatives of Appendix B are linearized and

included into the code. For specific a and p the static

stability derivatives are evaluated and included in the

Slinearized equations of motion. Table 3-1 lists the static

Table 3-1 Static stability
*Derivatives

Drag , CD, CDa ,CD

Lift s CL' CLa 'LA
Side 3 Cy, CYC ' CYp

Pitch : m Cma CmA
Roll , CI Cla ,
Yaw : Cn , Cn i C, p

stability derivatives that are linearized. The remaining

stability derivatives were taken from data collected by the

I Flight Dynamics Laboratory for the AFTIF-16 flying at Mach

-- 0.6 for three different altitudes (0, 5000, and 30000 FT).

Since the altitude of interest in this research is 15000

3 feet, the stability derivatives were estimated using a

second order polynomial fit of the three data point

Iavailable. Table 3-2 list the value of the derivatives that

3 are included in the computer code.

Since no data on the dynamic cross-coupling derivatives

were available for the F-16, they were assumed to be zero.

This is a reasonable assumption, since for low a their

contribution to aircraft motion is relatively small

according to Orlik-Rukemann, [12:1-1]. For each of the cases
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Table 3-2 control derivatives

CD CL Cm

u 0.000059 0.00002 -0.0000638
a 0.0 -0.99333 -0.77776
q 0.0 2.3989 -2.6761

Cy Cl Cn

I 0.0 0.0 0.0
p 0.080111 -0.23708 -0.0079264
r 0.53755 0.025172 -0.48192

I

and rudder failures, the eigenvalues are represented

graphically in Figures 3-1 to 3-8. The vertical line at

x=0.0 on most figures is a reference line. The eigenvalues

for case A do not change much over the trim area for both

rudder failures (less than are 2%) therefore an average

value of each of them is considered appropriate. They are

presented in Table 3-3.

ITable 3-3 Eigenvalues for Case A

0 Degree rudder failure -10 Degree Rudder Failure

3.16 s a s 3.19 0.88 s a s 0.95
0.05 s p s 0.10 -3.28 s p s -3.22
0.19 s 4 s 0.42 -7.75 s 4 s -7.48

-0.0023 ± 0.0676i Phugoid -0.0022 ± 0.0682i
-0.7275 ± 4.6301i Short Period -0.6499 ± 4.6773i
-.3624 ± 4.0805i Dutch Roll -0.4097 ± 3.8549i

-1.4703 Roll -1.57113 -0.0309 Spiral -0.0199

3
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The legend that describes each figure is in Table

i 3-4.

Table 3-4 Legend for Figures 3-1 to 3-8

a: Dutch Roll
b: Short Period
c: Roll3 d: Phugoid & Spiral

RUDDER FAILURES DEGREES3 0 -10 -20 -25

91  0.00 000 -4.40 -5"00

82 -3.30 -6.00 -6.00 -6.00

The functional form of the static stability derivatives was

derived from data, where -6.00 < A < 6.00 and 0.00 < a <

20.00. Therefore the curve fitting used for points outside

3 the p limits may show odd behavior. This is the reason why

the eigenvalues have a strong departure for A < -6.00 and

3 for rudder failures greater than -100. One other interesting

point is the dynamic stability of the open loop system.

Since all the real parts of the eigenvalues are negative,

the open loop plant is dynamically stable. Equation 3-5 was

used to look at the controllability of the system. Boundary

points as well as some intermediate points were evaluated

for controllability. All the points that were checked

yielded a controllable system. This means that with an
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appropriate controller, it is possible to position the

jeigenvalues of the system to guarantee dynamically
stability. Now the question that needs to be answered is:

Does the present controller on the aircraft still adequate

considering the damaged rudder? The next chapter will

I provide a means to answer this question.

Summary In this chapter, all the equations needed to

analyze the dynamic stability of the open loop F-16 aircraft

having sustained a rudder failure were derived and put into

3 matrix form to facilitate the analysis. The results showed

that the aircraft remains dynamically stable, but with

lightly damped phugoid, short period and dutch roll modes. A

3] rigorous analysis of the results is done in Chapter V.

3
I
I
I
U
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I IV. STATE SPACE MODEL DEVELOPMENT
I

Introduction

In order to investigate if the F-16 control system

augments the aircraft dynamic stability for given trim

Iconditions and specific rudder failures, a state space model
of the aircraft flight control system was created. The

aircraft plant derived in Chapter III is for different trim

conditions, but at a specific speed and altitude. To be

rigorous, a state space model would have to be developed for

Ieach trim condition, since the model is dependent on the

trim velocity of the aircraft and a trim. For the range of

trim conditions analyzed, the same control system model is

Iused throughout the analysis.

IPlant Matrix Development
In order to construct a state space representation of

the F-16 control system, a flight condition must be

selected. The control law diagram presented in the F-16

Software Mechanization Document [8] is linearized about the

Iflight condition presented in Table 2-2. No pilot input are

used, so all paths associated with pilots inputs can be

ignored. Since the horizontal tail is used to command both

j pitch and roll rates, an effective flaperon deflection input

I 4-1
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i was determined [8]. The effective flaperon deflection is

= = 8p + .2948R. (4-1)

where:

aFeff = Effective Flaperon Deflection (0)

5, - FlaperonDeflection (')

8 = Horizontal Tail Deflection (6)I
This effective flaperon deflection was incorporated into the

computer code to calculate the B matrix for both cases at

the given trim conditions. The effective flaperon deflection

is on!, used for the roll rate commands. Another

modification is also made to the control law diagram. The

load factor command is change to pitch rate command. The

gain in the command path of the control law diagram has to

be adjusted in orde;: to convert load factor to a pitch rate

command. This is done using the steady Z axis acceleration

I as shown in equation 4-2.

I q Vo (4-2)
A (57.3) (32.2)I

where:

3 An = normal acceleration at pilot station (g)

q= pitch rate (*Is)

i Vo = steady state forward velocity (ft/s)

I
i 4-2
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IFigures 4-1 and 4-2 show the final configuration of the

linearized control law for both the longitudinal and lateral

axis. Since the aircraft has a failed rudder, the lateral

3 axis still needs to be altered to represent it. This is done

by removing all feedback paths that are input into the

3 rudder. The final configuration of the linearized control

law for the lateral directional axis is shown in Figure 4-3.

The state vector used to represent the aircraft is

3 shown in equation 4-3.

X=[ u a pqr*O ] (4-3)

3 Since the commanded input is pitch rate instead of load

factor, the outputs of the system available for feedback are

i a, q, and An* An is in units of g's. The expression for the

normal load factor at the pilot station is

a = a . -xc.¢a. =w- - Xa4 (4-4)

which can be transformed using small angle approximation

3 into

A, [ -Vo ( - q ) + X4] (4-5)

I where Xa is the distance from the aircraft cg to the

3 accelerometer located under the pilot's seat. For the F-16,

I 4-3
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I

Xa is 14.0 feet. The next step is to build the measurement

matrices, C and D, associated with the plant. Referring to

figure 4-1, 4-3, and equation 4-5, the measurement matrices

3 become:

0 100 0 0000

0 001 0 0 00
[ 0] -- 0 0 0 1 0 0 0 0 [X], (4-6)

0 0

I 00
0 0 [~

I where An, and An2 are

An,= - ) a(2,i) +3( . a(52 )

- (32) [0 0 0 0 1 0 0 0 0] (4-7)

-v(x.)
A,2 = . b(2 j) + b(5 j)

32.232.22

m with i - 1, 2, 3, ..., 9, J- 1, 2, and a(2,i), a(5,i),

j b(2,j), b(5,j) representing the second and fifth row of

elements of the A and B matrix developed in Chapter III.

Therefore the final open loop system can be represented by

3 =A X + B (4-8a)

i 4-7
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C + D, (4-8b)

In order to prevent implicit algebraic equations while

I deriving the closed loop system, the state vector, X, can be

g redefined by including the control deflection into the state

and the actuator model into the input. This will then lead

I to

SA' ! + B'd (4-8c)

k = d A,(4-8c)

where the D matrix is part of C'.

Controller Development

I The feedback and feedforward paths shown in Figure 4-1

i and 4-3 can be expressed as a matrix in the Laplace domain

in terms of the aircraft inputs and outputs as

1.056(s+5) (3s+11.25) 0 T

s(s+11.25) 'n1 4
(s+10)

8FefJ 0 .12 P

0.353(S+5) (3s+11.25) 0 (4-9)

(s+l) (s+11.25)

[-20.99(s+5) 0o :
0, .12

3 4-8
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3 The transformation of the matrix from the Laplace

domain to the time domain can be done by transforming each

Laplacian element into a state space phase variable

canonical form [13s210-215]. The transformation in this case

was done using the command called tfm2ss of the control

analysis computer program called Pro-Matlab, [10]. A minimum

realization was also performed on the matrix to remove

Iunnecessary states. The feedforward (subscript E) and

feedback (subscript K) in the time domain are shown in

equation 4-10a to 4-11b respectively.

I = Aff + BA (4-1ea)

IVx= C, x 3 + DJA =d -U2  (4-l0b)

I
AK z X + BX (4-11a)

I rCrXr + DX (4-11b

where

mI = co Po T (4-12a)I

and

= M +L 2  (4-12b)

5 4-9
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Closed Loop System Derivation

The F-16 utilizes negative input and positive feedback

in its control law diagram, as shown in Figures 4-1 and 4-2.

i This is due to the sign convention which defines a positive

deflection of the effective flaperon or the horizontal tail

as being trailing edge down. Since the computer program used

to get the closed loop state space representation uses

negative feedback, the sign of the C and D matrix need to

be changed. The block representation of the total system is

shown in Figure 4-4. Using Eq (4-10a) through (4-12b), it is

now possible to derive the closed loop model of the

aircraft.

Substituting equation 4-8d into 4-11a and 4-11b gives

gK = Ajr Xk + Bj, C xI (4-13a)

U U1 = C, + Djr C (4-13b)

Placing equation 4-12b into 4-8c and substituting 4-13a and

4-13b will lead to

=(A + B' D, C) a + B' C Xj + B' Ds 80 (4-14)
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U Combining equation 4-10a, 4-14, 4-8d, and 4-13a into matrix

* form yields

As 0I B'C A' + B' Dr C B' A t
AK 0 BK C' Ajr XK

SB, (4-15)

+ B'D [8].,.
0

X [o C' 0] j (4-16)

XK

Using Equation 4-15 and 4-16 it is now possible to

determine the characteristics of the closed loop system.

I Appendix F shows an example of one open loop and closed loop

systems for one trim condition of case B.

Summary

In this chapter the closed loop system was derived

using a modified controller that takes into account the

failed rudder. The eigenvalues can then be calculated for

each case and failure. The open loop and closed loop

eigenvalues can be compared to determine the effectiveness

of the controller. Analysis of the results is performed in

the following chapter.
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V. DISCUSSION OF RESULTS

Introduction

In the previous chapter, the closed loop plant for the

F-16 aircraft was derived considering a damaged rudder. The

model is used to determine, for each rudder failure and trim

condition, the closed loop eigenvalues of the system. A

physical explanation is given on the behavior of the system

and its implication on the aircraft dynamic stability.

Eigenvalues of the Closed Loop System

-- Using the controller developed in the previous chapter,

the eigenvalues for each rudder failure and trim condition

are calculated. Since the linearization of the equations of

motion presented in Appendix D includes cross coupling

derivatives and asymmetric trim condition, the results

-- obtained from the closed loop system are dependent on the

m angle of attack (a), the sideslip angle (p), and the bank

angle (4). Table 3-4 in Chapter III also describe Figures

m 5-1 to 5-8.

ILongitudinal Motion
3For case A, the closed loop eigenvalues for a rudder

failure of 0 and -10 degrees are presented in Figures 5-1

* and 5-2. The controller in this case does not significantly

5-1
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change the location of the eigenvalues close to the

imaginary axis.

If the rudder fails at zero degrees for Case B, Figures

5-3 and 5-4 show the migration of the eigenvalues from - 0

degrees, *1= 0 degrees, al- 3.17 degrees to P2- -3.3

I degrees, 02" -5 degrees, a2 - .8 degrees. The phugoid complex

i conjugate eigenvalues remain very close to the origin (d),

for both the open and closed loop system, since they depend

primarily on aircraft velocity, which does not vary

significantly. At various p, the closed loop phugoids become

I unstable with a natural frequency around 0.06

radians/second. This instability can easily be compensated

by pilot. This is also true for rudder failure less than 0

degrees as seen in Figures 5-5 to 5-8.

The short period oscillations (b) in the open loop case

presented in Figure 3-2 are lightly damped. By introducing

the controller, their damping decrease where they become

unstable for values of P between -2.17 and -1.28 degrees as

shown on Figures 5-3 and 5-4. For rudder failure of -10

degrees the instability occurs for values of p between -2.66

and -0.7 degrees. As the aircraft moves away from a wings

level trim condition, a decreases and the bank angle becomes

less than zero degrees, which means the stability

derivatives related to a are affected. Since the model uses

fixed dynamic stability derivatives, the natural frequency

will tend to decrease and the damping will eventually
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increase (for p less than -2.17 degrees for a 0 degrees

rudder failure) as the absolute value of the stability

derivatives related to a decrease [6:309]. For a rudder

failure of less than -20 degrees, the short period roots are

pairing with the controller roots, and two distinct motions

appear as shown on Figures 5-7 and 5-8. The sideslip angle

(P) at which those motions occur is less than -7 degrees,

which is outside the boundary defined earlier.

Lateral Motion

In Figure 4-3, the controller has lost the ability to

feedback any signal to the rudder. This effect is seen in

the dutch roll behavior in Figures 5-1 to 5-8. Compared to

the open loop case, the controller basically decreases the

dutch roll damping since it has lost the ability to feedback

either roll rate or side acceleration to the rudder. Since

feeding back the roll rate, in this case, decreased the time

constant of the spiral, this also had the effect of

decreasing the dutch roll damping. As p moves away from a

zero degrees value, the real part of the dutch roll tends to

stay stationary while the magnitude of the imaginary part

increases. As A becomes smaller, the dutch roll natural

frequency increases and its damping decreases.

The spiral root for the closed loop case couples with a

controller root to create a pair of complex conjugate roots

near the origin. As p decreases, the roots move away from
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I the origin and create a lateral short period oscillation

before returning to the real axis. For rudder failures less

than -10 degrees, the complex conjugate roots break on the

5 real axis where they become real as seen on Figure 5-5.

The roll also couples with one of the controller roots.

I The effect encountered from that coupling is only apparent

for rudder failure less than -10 degrees as seen on Figure

5-5. A complex conjugate root is formed, moving away from

3 the origin, which produces a lateral short period

oscillation. As p decreases, the roots break into the real

axis for p less than -3.7 degrees.

For a rudder failure less than -20 degrees, the real

I roots located on the real axis couple to form a short period

I lateral oscillation.

For case A, closed loop system instability occurs for

I various values of P. This instability is generated by the

phugoid root. This is not critical since the natural

I frequency of the phugoid (around .06 radians/second) is such

I that the pilot can easily compensate for it.

I Discussion of Results

Even if the aircraft can be trimmed for specific rudder

I failure, the present controller modeled in Chapter IV puts

restrictions on the dynamic stability of the aircraft. For

the open loop system, the eigenvalues determined for both

3 cases gave a stable system for p less than -6 degrees. Since

I 5-4
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the controller loses the ability to use the rudder, the

control laws are altered. With the present controller, case

A is stable if it is assumed that the pilot can compensate

for the phugoid instability generated. For case B, not

taking into account the phugoid, the failure permitted with

the present controller is as follows:

Case B, 0 degrees rudder failure: the aircraft is

stable except for -2.2 < P < -1.3 degrees.

Case B, -10 degrees rudder failure: the aircraft is

stable except for -2.7 < p < -0.9 degrees.

Case B, -20 degrees rudder failure: the aircraft is

stable for -6.0 < p < -3.3 degrees.

Case B, -25 degrees rudder failure: the aircraft is

stable for -6.0 < A < -4.9 degrees.

In Chapter IV, the concept of controllability was

presented. For each trim condition, the open loop plant and

input matrices were evaluated for controllability. All were

controllable with the available input. Therefore, it would

be possible to redesign the controller in order to prevent

the instability of the closed loop system. One of the

important factors would rest in the control power still

remaining at specific trim condition.
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3 Summary

For both cases, the phugoid introduced instability.

-- Since the frequency of the phugoid is low, it was assumed

3that the pilot would be able to compensate. For case A, the

trim regions for both rudder failure types were dynamically

U stable. For case B, specific trim areas within each rudder

failure types are to be avoided. This was determined using

I- the modified controller presented in figure 4-1 and 4-3.

*Reconfiguration of the control laws could be done to

increase the trim envelope. The only limiting factor would

be the control power still remaining after the aircraft is

trimmed.

-- This analysis presented an appreciation of the

3- different types of motion that might be encountered when the

aircraft needs to be trimmed at different sideslip angles

due to a rudder failure.
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VI. CONCLUSIONS AND RECOMMANDATIONS

In Chapter I, it was stated that this research would

investigate the dynamic stability characteristics of an

aircraft which has sustained failure of a primary control

surface. This analysis was done by using existing data to

determine specific trim conditions and to evaluate the cross

coupling derivatives to be included in a linearized aircraft

model. A modified controller was then added to the aircraft

model to evaluate the closed loop response of the system.

Using the results of the closed loop dynamic

characteristics, the trim regions were modified to represent

the damaged aircraft. The following paragraphs provide a

summary of the observations and conclusions of this

research.

Trim Area

Equil irium analyses was performed for two specific

control implementations. The first used the actual control

surface actuation scheme of the basic F-16 aircraft. The

second permitted the horizontal tail aileron to deploy

independently from the flaperon. The first case only allowed

trim of the aircraft for a rudder failure between 0 and -10

degrees. The second case allowed trimming the aircraft for

the worst case rudder failure analyzed (-25 degrees).
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g Plant Model

When the equilibrium areas were determined, they were

used as input to the linearized equations of motion of the

aircraft. The model included only cross coupled static

1 stability derivatives. The aircraft plant matrices were

produced. The eigenvalues of the plant were determined to

evaluate the dynamic stability of the system for each trim

3 condition. It was observed that the plant matrices were all

dynamically stable for p less than -6 degrees at the given

I trim conditions. It was also noted that for all trim

conditions, the system was controllable. Therefore, it is

possible to improve the aircraft response even if it has

3sustained damage to its rudder.

Closed Loop System

The controller developed for the closed loop system

took into consideration the damaged rudder. It was

interesting to note that the controller was the limiting

factor in this analysis since the closed loop system was

dynamically unstable for some trim regions and rudder

failures. The results also showed the coupling that took

place when trimmed in an unsymmetrical orientation. As A

decreases, the roll angle, 0, decreases which introduces

strong coupling between the lateral and longitudinal motion.

This was observed by analyzing the eigenvalues of the closed

6-2
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loop system. Satisfactory aircraft dynamic response would

*require restructuring the control laws since the present

controller limits the aircraft.

Recommendation

During the course of this thesis, several areas of

interest emerged which would provide better understanding of

the problem of a control surface failure. They are:

3 1. Tne same analysis could be performed without using

cross coupling stability dejivatives. This would

* provide a baseline to evaluate their effect on the

aircraft motion.

2. The inclusion of the cross coupling dynamic

stability derivatives into the model would represent

the plant more accurately.

3. Development of a new controller would also permit

the aircraft to sustain damage to a primary control

surface by using greater independence of each control.

4. Only rectilinear flight was analyzed in this

research. Other flight conditions could also be

analyzed to determine if there are preferred

trajectories that could expand the trim envelope.

The first recommendation could easily be performed by

removing the cross coupling stability derivatives from the

actual plant model. This would permit the evaluation of the

6-3
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1 impact of the different derivatives on the model.

The second recommendation would require the

availability cf the dynamic cross coupling derivatives. r.JL

the trim conditions evaluated in this thesis, it would be

interesting to see if those cross coupling derivatives have

a noticeable effect on the observed motion.

The third recommendation would imply the redesign of

the aircraft control laws around the cases investigated,

which is a major task since several trim condition were

analyzed.

I In the last recommendation, combinations of aircraft

trajectories could also be evaluated together in order to

achieve quasi-rectilinear flight.

I

I
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APPENDIX A

F-16 Layout, Sign Conventions, and Axis Definitions

Figure A-1 shows a diagram of the general three-view

layout of the F-16. Figure A-2 defines the aircraft axis

systems, and the angles used to differentiate between them.

Control surface deflection conventions are also shown since

definitions for positive deflection are not universal. A

graphical representation of the different axis system is

also given.

A-1

I



II
IU

FiueA1I1 aotan eea ragmn

A-2u



I

I
3 (. -U)

3C fin IjT "it&A (V

I

-S ~ . Cn ci

Y 
C S

300y, C, C, X STA0r17

YT ZSTA B =" I"Y, 
v, 

300YT%'

37 I S b *NLA

I r^ " (K " ,L)

. - • &HIk - &4L)

Motes: r

Fig Sud Force CqI ai d Mt  
L

(Poset)ii andLaveeY UpwerdA

andl Race I 4" force X

Noe@ I,, FOr e

~(1) A Positive cortrol force produces a n~egative surface

dole~clo n a", e. . positive nowt about each axis.

(2) Forfeach tl'divtdual, control surface. tralling-edge dw
a e~) t, poest've.

(3J) Leding-*dge flo position Li wassued etrtanlis. All

other positions ae easred with respect to Ch b .-
l ine.

Figure A-2 Axis System and Sign Conventions

A-3

I



APPENDIX B

STATIC AIRCRAFT STABILITY DERIVATIVES

Included in this appendix are the functionnal forms of

the F-16 static stability derivatives found by Zaiser [5].

The derivatives are used in the trim analysis and in the

state-space model of the aircraft. Each set contain the

following information:

1. The control surface, i.e. zero, left leading edge

flap, etc.

2. The force or moment.

3. The correlation between the experimental data and

its functional form.

4. The number of terms in the polynomial.

The columns of the data file contain the following

information:

1. Number of the polynomial term

2. Power on the a term

3. Power on the 0 term

4. Power on the 6 term

5. The coefficient associated with that term

B-I
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I zero
lift
0.99895786134833I 8
01 00 00 00 0.02425990
02 00 01 00 0.01176668
03 00 02 00 0.02273735
04 00 03 0e - .00062970
05 00 04 00 - .00059436
06 01 00 00 0.070414961 07 01 02 00 - .00001098
08 02 00 00 - .00029655

zero
drag
0.99922396997176
12
01 00 00 00 0.00989113
02 00 01 00 0.00030617
03 00 02 00 0.00082931
04 00 03 00 - .00002382
05 00 04 00 - .00002320

06 01 00 00 -. 00090749
07 01 01 00 0.00017652
08 01 02 00 0.00036501
09 01 03 00 - .00001032
10 01 04 00 - .00000963
11 02 00 00 0.00114791
12 02 01 00 0.00000162

zero
side
0.98699308975102
8
01 00 00 00 .00000000

02 00 01 00 - .01817564
03 00 02 00 0. 00011201
04 00 03 00 -. 00003593

05 01 00 00 -.00007302
06 02 00 00 0. 00001572
07 02 01 00 0.00000599
08 03 00 00 - .00000196
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zero
pitch
0.999419588603181 9
01 00 00 00 0.00912623
02 00 01 00 - .00372458
03 00 02 00 - .00697840
04 00 03 00 0.00019974
05 00 04 00 0.00018126
06 01 00 00 - .01944657
07 01 01 00 - .00003131
08 01 02 00 -. 00001042
09 02 00 00 -. 00011202

zero
roll
0.97148373462692
12
01 00 00 00 0.00000000
02 00 01 00 - .00206500
03 00 02 00 0.00002188
04 00 03 00 0.00000592
05 01 00 00 0.00003762
06 01 01 00 - .00001006
07 01 02 00 0.00000007
08 01 03 00 0.00000037
09 02 00 00 0.00000083
10 02 01 00 0.00000072
11 02 02 00 -. 00000005

12 02 03 00 0.00000003

zero
yaw
0.99450857443165
9
01 00 00 00 0.00000000
02 00 01 00 0.00598800
03 00 02 00 - .00005049
04 01 00 00 - .00008376

05 01 01 00 0.00006041
06 01 02 00 0.00000241
07 02 00 00 - .00000379
08 02 01 00 .00000559

09 03 00 00 ..00000044

lie

lift
0.99911018902596
3
01 00 00 01 -. 00080409
02 01 00 01 0.00000181
03 00 01 01 -. 00009354
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I
I lie

drag£ 0.99558264659623
3

01 00 00 01 0.00023239
02 01 00 01. 0.000115675 03 00 01 01 0.00001087

lile
side
0.99268840957863
3

01 00 00 01 0.00003387
02 01 00 01 -. 00004212

03 00 01 01 -. 00003871

lie
pitch
0.99928094340029
3

I 01 00 00 01 -.00017172
02 01 00 01 -. 00002018

03 00 01 01 0.00004164

roll
0.94950568502171
3
01 00 00 01 -. 00006718

02 01 00 01 0.00001683
03 00 01 01 -.00000630

lie
yaw
0.98693954647448
3
01 00 00 01 -. 00002596
02 01 00 01 0.00001220
03 00 01 01 0.00001053

rle
lift
0.99942437477478

301 00 00 01 -.00092112
02 01 00 01 0.00005393
03 00 01 01 0.00006637

I
I B-4
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rle
drag
0.99902917949565£ 3
01 00 00 01 0.00066338
02 01 00 01 -. 00009976
03 00 01 01 0.00002005

rle
side
0.99129740157611
3
01 00 00 01 -. 00030801

02 01 00 01 0.00007528
03 00 01 01 -. 00002878

rleI pitch
0.99947325104706
3
01 00 00 01 -. 00029839

02 01 00 01 -. 00001594
03 00 01 01 -. 00004731

i rle
roll
0.92814744695374

01 00 00 01 0.00012548
02 01 00 01 -. 000015855 03 00 01 01 -.00000511

rle
yaw
0.98461215072914
3
01 00 00 01 0.00017089
02 01 00 01 -. 00003002
03 00 01 01 0.00001108

Ifl
Ilift

0.99710493885523
3
01 00 00 01 0.00808747
02 01 00 01 -. 00007270

03 00 01 01 0.00016236

B
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drag
0.992314742751743 3
01 00 00 01 0.00004459
02 01 00 01 0.000104853 03 00 01 01 0.00002147

Ifl
side
0.99121786830928
3
01 00 00 01 0.00005379
02 01 00 01 0.00002327
03 00 01 01 -. 00001908

ifl
pitch
0.99732533446253
3
01 00 00 01 -. 00220590
02 01 00 01 -. 000006861 03 00 01 01 -. 00014414

ifi
roll
0.94671363142610
3
01 00 00 01 0.00124298

02 01 00 01 -. 00001534

03 00 01 01 -.00000591

ifi
yaw
0.99067236168187
3
01 00 00 01 0.00011910
02 01 00 01 -. 00002654
03 00 01 01 0.00000969

rfl
lift

0.99710493885523

I 01 00 00 01 0.00808747
02 01 00 01 -. 00007270

03 00 01 01 -. 00016236

3 B-6
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rfl
drag
0.99231474275174
3

01 00 00 01 0.00004459
02 01 00 01 0.00010485
03 00 01 01 -. 00002147

rfl
side
0,99121786830928
3
01 00 00 01 -. 00005379
02 01 00 01 -. 00002327

03 00 01 01 -. 00001908

rfl
pitch
0.99732533446253
3
01 00 00 01 -. 00220590
02 01 00 01 -. 00000686
03 00 01 01 0.00014414

rfl
roll
0.94671363142610
3
01 00 00 01 -. 00124298
02 01 00 01 0.00001534
03 00 01 01 -. 00000591

rfl
yaw
0.99067236168187
3
01 00 00 01 -. 00011910
02 01 00 01 0.00002654
03 00 01 01 0.00000969

lht
lift
0.99875023115023
3

01 00 00 01 0.00524917
02 01 00 01 -. 00001946

03 00 01 01 0.00007021

B-7



I

I lht
drag
0.98700590428333
3

01 00 00 01 0.00023247
02 01 00 01 0.00014775
03 00 01 01 0.00001676

lht
side
0.99372908655258
3
01 00 00 01 -. 00098652
02 01 00 01 0.00001164
03 00 01 01 -. 00001998

lht
pitch
0.99720293330100
3I 01 00 00 01 -.00712409
02 01 00 01 0.00000701
03 00 01 01 -. 00009962

lht
roll
0.94875038542011
3
01 00 00 01 0.00052168
02 01 00 01 0.00000432
03 00 01 01 0.00000226

lhtI yaw
0.98483418189834
3
01 00 00 01 0.00055888
02 01 00 01 -. 00002129
03 00 01 01 0.00001092

rht
lift
0.99875023115023
3
01 00 00 01 0.00524917
02 01 00 01 -. 000019463 03 00 01 01 -.00007021

I
* B-8
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drag
drag

0.98700590428333
3

01 00 00 01 0.00023247
02 01 00 01 0.00014775
03 00 01 01 -. 00001676

rht
side
0.99372908655258
3
01 00 00 01 0.00098652
02 01 00 01 -. 00001164
03 00 01 01 -. 00001998

rht
pitch
0.99720293330100
3

I 01 00 00 @1 -.00712409
02 01 00 01 0.00000701
03 00 01 01 0.00009962

U rht
roll
0.94875038542011
3
01 eo 00 01 -. 00052168
02 01 00 01 -. 00000432

03 00 01 01 0.00000226

rht
yaw
' .98483418189834
3
01 00 00 01 -. 00055888
02 01 00 01 0.00002129
03 00 01 01 0.00001092

rud
lift
0.99903585130353
3

01 00 00 01 -. 00003361
02 01 00 01 0.00000247
03 00 01 01 0.00000177
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rud
drag
0.97920031383825
3
01 00 00 01 0.00022245
02 01 00 01 -. 00001533

03 00 01 01 0.00002796

rud
side
0.99435063831380
3

01 00 00 01 0.00334111
02 01 00 01 0.00000440
03 00 01 01 0.00000386

rud
pitch
0.99715538778147
3

01 00 00 01 0.00000413
02 01 00 01 -. 00000019

03 00 01 01 0.00003014

rud
roll
0.98420339634860
3
01 00 00 01 0.00053189
02 01 00 01 -. 00004126

03 00 01 01 0.00000001

rud
yaw
0.99464111708521
3
01 00 eo 01 -. 00204024
02 01 00 01 -. 00000473
03 00 01 01 -. 00000257
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IAPPENDIX C

i Equilibrium Area Fortran Code Flow Chart

i
This Appendix contained the Flow Chart describing the

I Fortran code used to perform the investigation of the

i equilibrium area for case A and B. The Flow Chart is seen on

Figures C-i and C-2.

I
I
I

I
i
I
i
I

I
I
* C-i
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APPENDIX D

Linearized Equations of Hotion

Introduction

In order to gain some insight into the nature of the

dynamic stability characteristic of the damaged aircraft, it

is necessary to derive the equations that governed the

aircraft motion about some nominal condition. This Appendix

will take the general equations of motion that are developed

by McRuer [6:203-232], linearized them for a rectilinear

flight condition, and expands the force and moment terms to

-- include the effect of coupling that are generated by a non

zero sideslip angle (p), and bank angle (t). The axis

systems used in this appendix are the aircraft body axis

system, and the stability axis system. A graphical

representation of both axis system is shown in Figure A-2

*of Appendix A.

Equations of motion

3 If the airframe is assumed to be a rigid body, the

earth to be fixed in space, and the mass and mass

distribution of the aircraft constant, the equations of

3 motion, for an aircraft, in the body axis system are given

by equation D-1. The kinematic equations that describe the

aircraft attitude are given in equation D-2. All force terms

3 D-1

I



in equation D-1 incorporate the aerodynamic and the thrust

forces. Assuming that the aircraft XZ plane is a plane of

symmetry (Ixy and Iyz equal zero) , equation D-1 can be

simplified. The results is shown in equation D-3.

X = m [ 1+ Q W - R V + g sine ]

Y = m [ 17 +R U - P W - g cose sin]

Z = m W + P V - Q U - g cose cosO I

L = P IX + QR ( Ix- I Y ) - ( P Q + P ) Ixz

+ ( P R - C ) Iyy - ( 2  R2 ) Iyz (D-1)

M = 0 Iy+ P R (I X- Iz) Q R + P) IXy

+ ( P Q -A) iy - ( R 2 -P 2 ) IXZ

N = P Iz + P Q ( y- IX - ( P R + 0 ) IyZ

3 +( Q R-P) IXZ- ( P2 _Q2 ) IX Y

1 4 = P + Q tanG sint + R tanO cost

3 Q cost - R sint (D-2)

( cos) cose

X = m [17 + Q W - R V + g sine ]

3 Y = m [ t +R U - P W - g cose sin]

Z = m [ '+ P V - Q U - g cose cost]

--- L - IX + QOR ( I X - - (y P + ) IXZ(D3

M = 0 Iy+ P R ( I X - Iz) - ( R 2 - 2) IX Z

IN = R IZ+ PQ ( Iy- I X ) + R IXZ

D-2
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I Linearized Equations of motion

Since equations D-2 and D-3 contain products of

dependent variables, they need to be reduce to trackable

5 form where the total motion can be represented by an average

motion (trim condition symbolized by the subscript 0)

3 representative of the operating condition, and a dynamic

motion that account for small perturbations about the mean

I motion (symbolized by small letter). For a rectilinear

-- flight, the average motion of the aircraft about it center

of gravity will be zero as well as all acceleration terms.

Assuming small perturbations about the trim condition, the

linearized equations of motion can be written in the

aircraft body axis system as

dX = m ( 0 + W0 q - V0 r + g (cos9 0 ) 8

dY = m ( 1 + U0 r - W0 p - g cos&0 coslot

+ g (sine0 sin$0 ) a )

dZ = m ( w + V0 p - U0 q + g (cos9 0 sin$0 ) *
+ g (sin90 costo) e ) (D-4)

dL = P IX - f I XZ

I dM = 4 Iy

dN = t IZ - P IXZ

D-3
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and the linearized kinematic equations as

I
= p + q tanee sinf 0 + r tanO0 cost 0

j = q cost 0 - r sine0  (D-5)

3 ( cos'o +q sinto 1
cosee J Cos 90 3

* Assuming that the thrust vector is in line with the X body

axis and balance all other trimmed forces, its contribution

to the perturbed motion can be neglected [6:267]. Therefore,

3 the dX, dY, dZ, dL, dM, dN are only perturbed aerodynamic

forces that contribute to the dynamic of the aircraft. Using

small angle approximation, it is possible to express v and w

in term of p and a respectively. The resulting equation is

shown below as

w

and -

V and (D-6)

Ju2 + we2  j/uo + 0

U- O

D-4
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I Substituting equation D-6 into D-4 and rearranging such

I that the time derivative terms are on the left hand side of

each equations will,lead to

I _ W0 q+ VO r- g (cose) e]

( O 2 + Wo 2  ) m

+ g (cose O cos$ O) 4 - g (sine O sinl O ) e ]

-d- - Vo P + Uo q

- g (coseo sinto ) 0 - q (sineo costo) e

p=dL IZI) + dN xzZ 1

dM Z I X) (D-7)

Iy

t = dL IXZ + dI

= p +q ( ane 0 sinf 0 ) + r (tane O cos 0 )

I = q cost O - r sine O

sinoo C$O

cosee I os e0 J

The terms that need to be determined are the aerodynamic

force and moment that are included in equation D-7.

Aerodynamic Forces and Moments

The representation of the aerodynamic forces and

moments is usually made in the stability axis system

D-5
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(subscript s). The aerodynamic forces and moments acting on

the aircraft in the stability axis system are

XS =-Drag(D) 1 V2 S CD

1 SCy
Ys = Side force( Y) = -- p2

2

S S =-Lift(L) =- -4 v2 s

(D-8)

LS = RollingMoment = p V2 S C1

HS = PitchingHoment = P V2 S Cm
1

NS = YawingMoment = -P V2 S cn

I Since the equation of motions are written in the body axis

system, the aerodynamic forces and moments need to be

transformed into that axis system. The transformation matrix

that puts the aerodynamic forces and moments into the body

axis system is

I fcosa 0 sina
B S ] : 0 1 0 (D-9)
B =-sina 0 cosa

I
I
i

I D-6
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ITransforming the aerodynamic forces and moments in the body

axis system will result in

I
X = S cosa - ZS sina

1 -p V2)(S CD c O s a + CL sina)

2Y Y

p V2 S Cy

Z = XS sina + ZScosa

= ( p V2  (- CD sina - CL cosa~(D-10)

L =L S cosa - NS sina

( P V2 S) C1 cosa - Cn sina)

IM= MS

I pV S Cm

N = L s sina + NS cosa

(I p V2 s) C1 sina + Cn cosa)I
I

Equation D-10 can be expanded to determine its

Idependence with the perturbed motion. The expansion is done

using a Tailor series expansion at a given trim condition.

ID-7
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The expansion is represented by

F = F A + (. ) 0 A 1 (. ) IIA- 2 +. . . + (D-11)

H = N0 + 011 + 12 ... + ( am n

where F represent the forces, M the moments, A the dependent

variables, and I the perturbation from the trim condition.

The dependent variables in this case are

A = U, vpp,w , , p.q,.r, 6 (D-12)

where

u = VcosA cosa

v = Vsing (D-13)

w = V cosA sina

The higher order term have been eliminated from the

expansion to keep the perturbed equations of motion linear.

Taking only the derivative terms in equation D-11, it is

possible to evaluate the dependence of each aerodynamic

forces and moments in the body axis system with respect to

the dependent variables. Since the aircraft can be trimmed

at some angle a, p, and 0, decoupling of the linearized

equations of motion will not be possible.

Since the acceleration in the X body direction is in

general negligible, the term was omitted. Using equation

D-8



D-11 to expand equation D-10 for each dependent variables,

this will give the contribution of the forces and moments to

the perturbed motion. Expanding the X contribution in the

body axis system for the dependent variable u will give

-X = cosa - D dcosa
CI U 1U(D-14)

+L sina + L asina
+ aU au

where the derivative of each components of equation D-14 are

asina = asina ia Cosa sina
au a a au IUo2  + w2

acosa -cosa a sin 2a
au aa u IUo2 + wo2

aD= I 1 aV 2  1 V2  3V 8CD 1 V2 aCD 3a

2 -f  auav - a au

+1 V2 aCD ap 1
- 2aCD (-S

S 2 CD cos,80 cosa 0 + V0 ( cosP0 cosa 0  (D-15)

aCD sina0  (3CD sinp0 cos,80 cosa0
-G V0  2I ./ U 2 w02  FO Tv/Ue + w

aL S 2 CL cOsAO cosa0 + V0 a cosp0 cosa0

aCL sina0  (CL sinp0 cos80 cosao
- V_ Uo2+Wo2 - V0 wO

and 1 pt'02

D-9
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* Combining all the terms will result in

Xu '4 S -2 CD- CD ) cos + V sinp0 coso  
0

(( CL - C6 ) + sinAo cosp0 CL,

+ ( -2 CL - CL) cosAo) sina O cosa O

+ VO ( - C - CD ) sin2 a

(D-16)
I

In equation D-16, the dimensional derivative, XU is

1 expressed in terms of the nondimensional stability

derivatives. The definition of each nondimensional stability

I derivatives is well documented in McRuer [6:292-293].Also,

5 the addition of the cross coupling stability derivative

terms that can easily be related to the both longitudinal

3 and lateral derivatives for definition. The only difference

with McRuer development is the CiU derivative which is

I define as

= l =ac 1

where i can represent lift, drag, side force, rolling

3 moment, pitching momtat, and yawing moment.

3 Similar derivation can be done for each forces with

respect to each dependent variables to determine the

3 D-10
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* expression of each dimensional derivatives in terms of the

nondimensional stability derivatives .This will result in

the following equations

IU = q S ~ C-2 Cy - Cy U V0 ip OP Csp '1coaIV U0 2 1 0 + W02  Cy1oa

Zu ~ ~ ~ ~ ~ ~ .(0 S -2 C-C4 cs V i80coy60)C. sin a

( VO (CL - CA, sinpo cosp0 CL

3-(-2 CD - )D cospo) sinao cosao

I + e2 (CL- CDa ) si 2ae

(D-18)

1K 7 -2 CD- CDU )sin,6 0 - O C2 ]C coa

(-2 CL - C ) sinpo - o v0  go i cj sinao1

/UO 2 + W0
2 ~

(D-19)

5 D- 11



[-= ( -2 Cy- Cy ) singe + CiCof2lo y

(D-20)

II(-4 -2 CD - CU) singe -ve Cos 2 0 c Sifla01!CD - L___

I+ {(-2 CL - CLU sing - v0 CO2g CL)cosae]

v/Ue 2 +-We2- (D-21)

IW Svu2 W 2 (CL -CD, )cOs 2ae + ((-2 CD - CD, )cosp60
V0 +ili COS0

(- C LtCD)+ V/sine2 + We2  Cc Jsincae cosa0

+ 1 i -2 CL -CLk )cOsA0 - V0 sing0  Se p sn2a

(D-22)

qw S [ -(-2 Cy- Cy u )cospe - ye sine co0 Cy,) sinao

+ {ve cy )cosae]

Lie7 +We

3 (D-23)

3 D-12



IW s V Ou+~0 Cir -CD )COS 2a + -2 CL - Cl4. )cos8

I+ vIu e - (CL CA) V0 sinp0 co. a COPO snocsae
V0 e (C-C) , 0 + We2  CP Js

+ -2 CD -C,0 )COSPO + V0 sinfl cs COS si ]
I VIUo + Cc~e

(D-24)

3F S b5 e~ CU0OS 2  CD cosao + C11 sinao (D-2j

UV -2 21

2v 7 bIU02 2 PosCp0  (D-26)

I F COS2g CD, sinao -_C__ l3o (D-27)2 t' V CL

Xg ( ( - C~0  os2a0 + Ctr cosa0 sinao

U+ siU 0
2 

+op ( CD, sinao cosao C11 sinao

y 7F7 S 1 c2 (Cy cosao- b sinpcos~ Cy sinao)

(D-29)

5 D-13



Iw s _c- CL cos~a - CDd ia oa

+ sinpo cop b ( j sinae cosa0 - CD% sinf2 a

IXq= Z7sc [-CDq cosao + C.Lq sinao D]1

IYq =7S cC CY, (D-32)

Zq9 = '4C [ c CDi sinao - CLq cosae] (D-33)

IP = ye [ -CDP cosao CLP sincxe. (D-34)

2 b@

zp= ' [ -C~ sinao - C cosae] (D-36)

Xr = -T -CD, cosae + C~ sina0 ] (D-37)
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Yr- S b C y (D-38)

3 Zr - Sb' [-CDr sinao - CL cosa] (D-39)

I

x6i = " S( - C0 6 cosa0 + Cj, sina0  (D-40)I
Y6i =  cy6 (D-41)

Z6i = S(- CD6 sina 0 - C 05a) (D-42)

i Expanding the moments contribution with respect to each

3 dependent variables will lead to

LU ZS 2 C1 + ) cos 0 - Vsin0  cosp0 C cos 2ao
2 V0 FU0

2 +W0
2  J

3 + yVO (( Cn - C + ) sin 0 coso C,)
U +

3 + ( -2 Cn - C ) COSPo) sina0 cosa 0

3 VO - C- C1 )sin 2ao

I (D-43)
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If If(s 2 Cm+ C)- vU 0 sigec02a

Ie c1 SinP OSicao

S b COS@ - e snpe ospoc 2(D-44)

Nu= b If 2 Cn + C ~ cos-07 I )0 Co ao0S

{ V O0 - C1 - C; ) - sinfl cos COS )

3- 2 C1 - Clu cospo ) sina0 cosao

+ veu2_ C - C.4 ) s in 2cr0

(D-45)

II
m=q Sb II( 2 C1 + ) sinpo + ve cos2 i Po co (D-47

2 C1U 2u - + =w

£ ~IUD-+6



Nv= Sbff( 2 C+C, ) sig -+ o eC ia

2 2o I'

Ijj-2 Cn -Cn ) sinpo-v CO20 j Cosa
rlylU0 + Wey2  

sP I

L- W S ____ b 0 ___ _ ( Cn -C.4 )Cos 2 a ( -2 C1 - CU )cos~o

U - O' Ve sin,60 cosi3o sia 0  oa3Iu 2 + w 2  
- , -Cl + = ---__'.~ c js

(O V+ We in+ e I~

5+ [(-2 Cn -C,2 )o~ COSP + I~ Ve 2i~ JOP sin 2 ao

3(D-49)

M _ ___c 2 Cm +Ci ) COSP 0O - l@ __ V0 sinp0 cospo~ Sjl

LVO2 UO 2  rq ] c osiaj
L S b Cos2 PO(D-50)

( oCli coscfe - Cr sinao (D-52)

S b cweO 2 1
2 fo 2U0 ]+- (D-53)
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MW Sb(- cCl osa - ((-2 Cn - CnU ) cosp0

+ V0  CnCj )l + Ve sinp 0 o sP0 c Isia oc

22 +__ woI uo + W0 Ina O~

-2 C1 -ClU cospe + VU 0 +ip( W0
2 O C Ji a

3 (D-51)

-4 b2 cos~ 2Ao l sina0 . C osao(D54

Lp 2 b c cid Cos ae - e o sinao

+ siniB,0 cospe b -Cil sinao cosao + C N sin2 ae

MW S C ci C coa - b sinpo cospe C, sinanr1 2 V0 [Md2 W 2 '
(D -56)

3- SW ~'b c (c,, cos 2 a0 + Cl, sinao cosao

3 i'nto cospe b (c 1 sinae cosao - c1 0 sin2 ae

+ w0 2  j (D-57)
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L q~ 2 S b[C cosat Cn sinae](-i

Nq = Scb rC1 sinao + Cn coaIq2 V 0  I* q 1 q ( D -6 0

(D-61)

Ip 1= ZIS b 12 V [ '9P- flsna

I (D-62)

N= ~S2  c sinae + Cpco sao

(D-63)

Lr = ~Sb 2  cosae - c~ sinae12 V0  r Cr

IMr = S b c
2 V0 C

3 (D-65)
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Nr_ - Sb 2

2 V0  C1 sinao + Cnr cosao ]

(D-66)

L 6 i = S b (C1 cosao - C., sinae)

(D-67)

M6 = C Ccp(D-68)
=--S ( C1isinao + C., cosae)5 N6 i = S b(C16inOC 4  o

(D-69)

Using equations D-16 to D-69, it is possible to

determine the contribution of the total perturbed force and

3moment which is
d X = Z u u + XV v + XWw + XV i + X?

+ Xp p + Xq q + Xr r + X6 6i

I (D-70)

d Y= YU u + YVv + YWW + YV, ' Y+

+ YpP + Yq q + Yr r + Y6 , 6i

i (D-71)

I

Im It is now possible to replace equations D-70 to D-75

D-20
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II

I d Z = ZU U + ZV V + ZwW + +

i+ Zpp + Z 9 q + Zr  r + Z~j 6i ( - 2I (D-72)

d L = LU u + LV v + LW L+ LV' LP

+ Lpp + Lq q + Lr r + L 6 i 6 i

(D-73)

d M = MU u + MV V + MW w+ M17 V + NMI?

+ Hp + Mq q + Mr r + M6, 6i

I (D-74)

d N = NU u + NV v + NW w + NV, V + N0 0

+ Npp + Nq q + Nr r + N6 6i

(D-75)

into D-7 to get the total motion of the aircraft about a

trim condition which can be represented by

it =A x + B u

(D-76)

where

i x =[u a A P q r T e ]T

I u =[61 62 ... 6n] T

(D-77)

I
and 6n represent specific control surfaces that can be

I controlled by the pilot.

I
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Summary

In this Appendix, the linearized equations of motion

for an aircraft were derived. They were used in the

computer code of Appendix E to get the F-16 plant and

control variables matrices to evaluate the dynamic stability

of the aircraft.

D-22



APPENDIX E

State Space Derivation Fortran Code

This appendix describes the computer code used to

convert the stability derivatives for an aircraft at a

specific trim condition into a state space representation of

the form

Z=AX + (E-)

where A is the plant matrix, B is the control matrix, x is

the state, and u the control. Aircraft-specific data need to

be entered into the program as well as its stability

derivatives. Cross-coupling dynamic stability can be entered

into the code. Figure E-1 is a symplified flow chart

representation of the code.

If more than one trim condition is input into the

program, the output for the A matrices is a file where each

matrix occupied a 10x 9 space. Each 10x 9 space is subdivided

as follows:

a. the first line describe the aircraft attitude ( , a,

0, 8, zeros)

b. the remaining 9 x9 space represents the plant matrix

The output for the B matrix occupied a 10x 2 space. The

first line contains p and a, and the remaining 9 x2 space is

the control variables matrix B.

E-1



Input flight condition

Input Stability Derivatives
(from Appendix C)

- Linearized Stability derivatives
- ffor Given Flight Condition

- Input Dynamic Stability
i Derivatives

" Calculate Nondmensional
Derivatives in Body Axis

IU
Sum Nondimensional Derivatives

I t A

Form the B Matrix

Output A & B MatricesI

Figure E-1 State Space Derivation Fortran Code Flow Chart
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1APPENDIX F

CLOSED LOOP SYSTEM EXAMPLEI
This Appendix contains an example of the derivation of

the closed loop system eigenvalues for case B.

I The aircraft states are:

S[7ff] (F-i)

* The open loop state space matrices are represented by

S= A + B2)

X = C +D2j +DUI
where A is the plant matrix, B the control input matrix, and

I C and D are the measurement matrices associated with each state or

control. Matrices A and B were developed using the linearized equations of

motion of Appendix D and the computer code developed of Appendix E.

Matrices C and D were determined using equation 4-6 to 4-8c. The matrices

are presented on the following page.

I
I
* F-i

I



I

I A-

Columns 1 through 6

-1.3100e-003 1.7500e+Oei 1.0900e 001 -8.6500e-004 -3.6200e.001 -9.2300e+000
-5.7800e-005 -8.1600e-001 2.900ee-001 1.3800e-002 9.9800e-001 0
-2.4000e-006 -1.4700e-003 -2.1300e-001 5.4500e-002 0 -9.9600e-001
-1.00OOe-003 2.9500e+000 -3.7000e+001 -1.4400e+000 0 2.18OOe-001
1.9300e-003 -2.1600e+0O1 7.6500e+000 -1.7100e-003 -5.5100e-001 e
3.3100e-004 -

3
.1500e-001 1.4800e+001 -1.4100e-003 0 -4.730Oe-001a 0 1.0000e 000 a a

0 0 0 1.0000e+000 1.4500e-002
0 0 0 -1.4500e-002 •

00 0 O 0S0 • 0 • 0

Columns 7 through 11

-4.3600e-005 -3.2100e+001 0 -1.9800e-001 -7.2900e 000

6.9700e-004 -2.6200e-003 0 -3.5700e-003 8.8700e-004
4.80OO0e-002 3.7900e-005 0 -2.03e0e-OO3 3.9300e-004

0 0 0 1.2100e OOO -4.1800e-002
-8.6400e-005 3.2500e-004 0 -2.890e-001 4.7100e-002

0 0 0 5.1700e-OO1 -4.4200e-002
o a 0 a a
0 0 a 0I 0 • a0 O 0 -2.0000e+001 a
0 0 0 -2.0000e OO1

SB = D =

• 0 a

a 0 0

20 0
0 20

|~ c=
Columns 1 through 6

1.0000e 000 0 0 0

O 0 0 1.0000e+000 0 a
a 0 0 0 1.0000+000 0

1.9748e-003 6.7476e+000 -2.4095e+000 -2.7288e-001 -1.9893e-001 0

Columns 7 through 11

* 0 0 0 0
0 0 0 0 0

-1.3783e-002 5.1808e-002 0 -5.4622e-002 2.8838e-003

I
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I

The state space system that represents the feedback

paths (Figure 4-4) is written in the same form as equation

F-2 with the matrices AK, BK, CK, DK. The original system

3 had several states that could be removed. The results are:

Ak =

-7.3497e.oeo 4.7151e 000 -2.1075e+000 -2.9966e+G00
3.8161e+000 -3.6699e+000 -1.0872e+000 8.1433e-001

-7.6241e-016 7.0566e-001 -1.2343e+001 -5.1952e+000
1.3395e-016 -1.1561e-016 2.6901e+000 1.1121e+000

I
Bk-

3.0575e-002 4.6e53e-e02 0 6.0851e-003
-3.0824e-eO3 -3.1984e-002 G -8.6013e-e03
7.0122e-002 -2.0804e-002 0 2.5616e-002

-9.4972e-003 5.0364e-003 0 -4.4444e-003I
I Ck-

-1.2270e-014 1.0676e-014 -1.9959e-014 -8.3393e+0023 e e e e

I
Dk=

-3.1680e+000 0 0 -1.0589e+000

0 0 -1.20e e-001 
0

Assuming that no inputs are feed forward , both systems

can be combined together using equations 4-15 and 4-16 , to

form the closed loop model of the aircraft. The results are

3 shown on the following pages using the representation of

equation F-2 with the matrices ACL, BCL, CCL' DCL to

3 represent the close loop system.
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I.
I

3 A,
Columns 1 through 6

-1.3100e-003 1.7500e+001 1.0900e+001 -8.6500e-004 -3.6200e+001 -9.2300e+000
-5.7800e-005 -8.1600e-001 2.9000e-001 1.380e-002 9.9800e-001 0
-2.4000e-006 -1.4700e-003 -2.1300e-001 5.4500e-002 0 -9.9600e-001

-1.0000e-003 2.9500e+000 -3.7000e+001 -1.4400e+000 0 2.1800e-001
1.9300e-003 -2.1600e+001 7.6500e+000 -1.7100e-003 -5.510e-001 0
3.3100e-004 -,3.1500e-001 1.4800e+001 -1.4100e-003 0 -4.7300e-001

a 0 0 1.0000e+000 0 0

a a 0 0 1.0000e000 1.4500e-002
• 0 0 0 -1.4500e-002 0

4.1824e-002 2.0627e+002 -5.1031e+001 -5.7794e+000 -4.2131e+000 0
a 0 0 0 2.4000e+000 0

1.2017e-005 7.1635e-002 -1.4662e-002 4.4392e-002 -1.2105e-003 0

-1.6986e-005 -6.1120e-002 2.0725e-002 -2.9636e-002 -. 7110e-003 0
5.0587e-005 2.4297e-001 -6.1722e-002 -2.7794e-002 -5.0958e-003 •

-8.7767e-006 -3.9486:-002 1.0709e-002 6.2492e-003 8.8411e-004 •

Colulns 7 through 12

-4.3600e-005 -3.21:::+001 0 -1.9800e-001 -7.2900e+000

6.9700e-004 -2.6200e-003 0 -3.5700e-003 8.8700e-004 a
4.8000e-002 3.7900e-005 0 -2.0300e-003 3.9300e-004 0

0 0 0 1.2100e+000 -4.1800e-002 0
-8.6400e-005 3.2500e-004 0 -2.8900e-001 4.7100e-002 0

* 0 0 5.1700e-001 -4.4200e-002 0
*0 0 0 0 0
0 0 0 0 0 0

a 0 0 0 0
-2.9190e-001 1.0972e+000 0 -2.1157e+001 6.1076e-002 2.4539e-013

* 0 0 0 -2.0000e+001 0
-8.3869e-005 3.1526e-004 0 -3.3238e-004 1.7548e-005 -7.3497e+000
1.1855e-004 -4.4562e-004 0 4.6982e-004 -2.4804e-005 3.8161e+000

-3.5306e-004 1.3271e-003 0 -1.3992e-003 7.3872e-005 -7.6241e-016

6.1255e-005 -2.3026e-004 0 2.4276e-004 -1.2817e-005 1.3395e-016

Columns 13 through 15

O 0 a
* 0 0
* 0 0

4.7151e+000 -2.1075e+000 -2.9966e4000)
-3.6699e+000 -1.0872e+~000 8.1433e-001
-2.1352e-013 2.69018e-000 1.6679e+004
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I
I.
I

CL

00

20 0

0 2
0 0

0 0
0 0

0 0

20 0
0 0
0 0

20 0
0 20

0 0

C =

CCL

Columns 1 through 6

0l l .OOOe+000 0 0 0 0
0 0 0 1.OO~OOO 0 0 00 0 0 0 l.OOOOe O0 0

I9 1.9748e-003 6.7476e+000 -2.4095e+000 -2.7288e-002 -2.9893e-003 0

Columns 7 through 12

0 0 0 0 0 0

0 0 0 0 0 0
-1.3783e-002 5.1808e-002 0 -5.4622e-002 2.8838e-003 0

Columns 13 through 15

0 0 0

0 0-- 0 0 0

*~00
0 0
0 0

0 0
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I.

The eigenvalues, or poles, of the open loop plantI are:

I
0

-6.6025e-001 4.7020e+000i3-6.6025e-001- 4.7020e+000i
-3.7151e-001+ 4.0162e+000i
-3.7151e-001- 4.0l62e+000i

-1.3977e+000
-2.2807e-003+ 6.4055e-002i
-2.2807e-003- 6.4055e-002i
-2.8505e-002
-2.0000e+001
-2.0000e+001

I

U The eigenvalues of the closed loop system are given by

1 0
-2. 0781e+001
-2. OOle+001
-1. 1034e+001+ 5.9130e-001i
-1.1034e+001- 5.9130e-001i
-8.5100e-001+ 4.6972e+000i
-8.5100e-001- 4.6972e+000i
-1.4483e-001+ 4.1989e+000i
-1.4483e-001- 4.1989e+000i
-9.5788e-001+ 8.1864e-001i
-9.5788e-001- 8.1864e-001i
-4.2502e-003+ 5.9495e-002i
-4.2502e-003- 5.9495e-002i
8.5586e-003

-1.4456e-001

U And the transmission zeros of the close loop system are

-1.1250e+001- 5.1020e-016i
-1.0000e+001+ 1.0214e-016i
-1.0000e+000

-7.5158e-008
9.1738e-017

* F-6
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